@inproceedings{wen2024chase,author={Wen, Yuhang and Liu, Mengyuan and Wu, Songtao and Ding, Beichen},title={CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition},booktitle={Advances in Neural Information Processing Systems (NeurIPS)},year={2024},pages={9388--9420},volume={37},publisher={Curran Associates, Inc.},url={https://proceedings.neurips.cc/paper_files/paper/2024/file/11f5520daf9132775e8604e89f53925a-Paper-Conference.pdf},}
@article{zhang2024facial,author={Zhang, Yi and Xu, Xinhua and Zhao, Youjun and Wen, Yuhang and Tang, Zixuan and Liu, Mengyuan},journal={IEEE Transactions on Image Processing},title={Facial Prior Guided Micro-Expression Generation},year={2024},volume={33},number={},pages={525-540},doi={10.1109/TIP.2023.3345177},dimensions={true},}
Surfer: Progressive Reasoning with World Models for Robotic Manipulation
Pengzhen Ren*, Kaidong Zhang*, Hetao Zheng, Zixuan Li, Yuhang Wen, Fengda Zhu, Mas Ma, and Xiaodan Liang†
@inproceedings{wen2023interactive,author={Wen, Yuhang and Tang, Zixuan and Pang, Yunsheng and Ding, Beichen and Liu, Mengyuan},booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},title={Interactive Spatiotemporal Token Attention Network for Skeleton-Based General Interactive Action Recognition},year={2023},volume={},number={},pages={7886-7892},doi={10.1109/IROS55552.2023.10342472},dimensions={true},}
@inproceedings{fpbfomm2021,author={Zhang, Yi and Zhao, Youjun and Wen, Yuhang and Tang, Zixuan and Xu, Xinhua and Liu, Mengyuan},title={Facial Prior Based First Order Motion Model for Micro-Expression Generation},year={2021},isbn={9781450386517},publisher={Association for Computing Machinery},address={New York, NY, USA},url={https://doi.org/10.1145/3474085.3479211},doi={10.1145/3474085.3479211},booktitle={Proceedings of the 29th ACM International Conference on Multimedia},pages={4755-4759},numpages={5},keywords={facial micro-expression, facial landmark, deep learning, micro-expression generation, generative adversarial network},location={Virtual Event, China},series={MM '21},dimensions={true},}
CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images
Xinhua Xu*, Yuhang Wen*, Lu Zhao*, Yi Zhang, Youjun Zhao, Zixuan Tang, Ziduo Yang, and Calvin Yu-Chian Chen†
@article{caresunet2021,author={Xu, Xinhua and Wen, Yuhang and Zhao, Lu and Zhang, Yi and Zhao, Youjun and Tang, Zixuan and Yang, Ziduo and Chen, Calvin Yu-Chian},title={CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images},journal={Medical Physics},volume={48},number={11},pages={7127-7140},keywords={computed tomography (CT) image, content-aware residual UNet, coronavirus disease 2019 (COVID-19), deep learning, segmentation},doi={10.1002/mp.15231},url={https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.15231},eprint={https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.15231},year={2021},dimensions={true},}